
 
www.iaset.us                                                                                                                                                     editor@iaset.us 

 

THE EFFECT OF HEAT TRANSFER ON TWO-LAYERED BLOOD FL OW THROUGH A 

COMPOSITE STENOSIS IN THE PRESENCE OF A MAGNETIC FI ELD 

ALANA R. SANKAR 1, SREEDHARA RAO GUNAKALA 2 & DONNA M. G. COMISSIONG 3 

Department of Mathematics and Statistics, The University of the West Indies, Trinidad and Tobago 

 

ABSTRACT 

A two layered model consisting of a peripheral cell-free layer and a core particle-fluid suspension was used to 

describe blood flow through a composite stenosis in the presence of both an external magnetic field and convective heat 

transfer. The effect of varying the strength of the magnetic field and the pressure gradient on the fluid's velocity was 

examined. Temperature profiles were generated and used to examine the effect of varying the magnetic field strength and 

hematocrit level on blood temperature. The effect of varying the magnetic field strength, hematocrit and stenosis height on 

the friction-factor Reynold's number and Nusselt number was examined in the presence of the composite stenosis.           

This knowledge can aid in the improvement of existing diagnostic tools used for cardiovascular diseases and in the 

understanding of the effect that a magnetic field and convective heat will have on cardiovascular patients. 
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INTRODUCTION 

Cardiovascular disease is expected to remain a popular subject of scientific research and the single leading cause 

of death worldwide according to the World Health Organisation's prediction of 23.3 million deaths by 2030 [1]. The two 

major events that contribute to these deaths are the occurence of a heart attack or a stroke. These usually follow a blockage 

in the blood flow to the heart or the brain respectively by a stenosis. A stenosis is an abnormal growth which can form at 

any location of the cardiovascular system under diseased conditions. It can be modelled as a single (bell-shaped, 

symmetric, non-symmetric, composite) or a multiple (overlapping, irregularly shaped) stenosis. The study of a composite 

stenosis is important since the shape of the stenosis in the artery varies. Blood flow studies involving magnetic effects and 

heat transfer can provide useful insights into the diagnostics of cardiovascular diseases. 

Blood circulation has a vital role to play in the heat transfer between living tissues, especially in the peripheral 

vessels where the temperature is closely related to the blood flow rate. Although the outer surface of the human skin can 

tolerate and adapt to large temperature changes, the human internal organs cannot. When the temperature changes,                     

a sophisticated heat regulatory system is necessary to facilitate heat loss or heat gain to keep the internal body temperature 

around 98.60F [2]. Body heat that is produced by the skeletal muscles is removed by convective heat transfer. Convection 

is heat transfer which is accomplished by mass transfer i.e. movement in the fluid. If the fluid motion involved in the 

process is induced by some external means (e.g. pump, blower, wind, vehicle motion, etc.) the process is called forced 

convection [3]. Since human blood is pumped by the heart, forced convection is a suitable model for heat transfer. Wang 

studied the forced convection heat transfer in a narrow vessel using a two fluid model [4]. Sanyal et al. extended this model 

to include the effects of a magnetic field. Convective thermodynamic studies are significant to processes like oxygenation 

and haemodialysis but can also be applied to the study of local hyperthermia and cryosurgery for tumour treatment [5]. 
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The thermally important blood vessels are the ones with diameters ranging between 50-500 µm since these 

smaller blood vessels were observed to be more actively engaged in heat exchange. To realistically describe blood flow in 

blood vessels of diameter ≤ 1000 µm, based on Haynes' theoretical analysis and Cokelet's experimental observations, a 

single-phase fluid analysis is insufficient [6, 7]. Further, the discovery that hematocrit (red cell volume fraction) in human 

blood is approximately 45% and has a strong influence on the blood flow properties of blood led to the treatment of the red 

blood cells (erythrocytes) as discrete particles [8]. Thus, the two-phase macroscopic model (i.e. a suspension of red cells in 

plasma) proposed by Srivastava and Srivastava for blood flow in small vessels (of diameter ≤ 2400 µm) catered for the 

individuality of the red cells (of diameter 8 µm) [9]. Additionally, experimental work provided evidence for the existence 

of a layer of plasma containing no cells located layer near the walls and a core region containing all the erythrocytes 

suspended in plasma [10]. Therefore a two layered model consisting of a cell free peripheral plasma layer and a core region 

with the red blood cells in plasma can be used to more realistically describe blood flow in these thermally important 

vessels. 

Using this two-layered model Sankar et al. examined the effect that an external, uniform, transverse magnetic 

field had on the blood's velocity, flow rate and three of its flow characteristics through a composite stenosis [11]. Low 

intensity, low frequency magnetic energy is used to treat chronic pain secondary to tissue ischemia and non healing or 

slowly healing ulcers. In this study however, the effects of heat transfer will be included by considering forced convective 

heat transfer. A more realistic two-layered flow consisting of a peripheral cell-free layer and a core two-phase flow in the 

presence of a composite stenosis was utilised. Convective heat transfer in the presence of a stenosis has not been studied 

previously. Also the effect of convective heat transfer on the chosen mathematical model has not been examined in the 

previous literature. From this study, velocity and temperature profiles will be generated and the effect of the magnetic field, 

hematocrit and stenosis height on the friction-factor Reynold's number and Nusselt number will be examined in the 

presence of the stenosis. 

METHODOLOGY  

 

Figure 1: The Geometry of the Stenosed Artery 

Consider a two layered model for the axisymmetrical, fully developed, steady, laminar flow of blood through a 

cylindrical vessel in the presence of a composite stenosis. The two layers are a central core layer of radius 1R  which is a 

suspension of red blood cells (erythrocytes) in plasma and a peripheral plasma layer of thickness )1( RR − modelled as a 

Newtonian, viscous fluid. The wall near to the stenosis development is assumed to be solid. The artery is assumed to be 
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uniform, circular and rigid with its length being much greater than its radius so that entrance, end and special wall effects 

can be neglected. A uniform, transverse magnetic field is applied in the axial direction in the presence of forced convective 

heat transfer. The geometry of the stenosis that is manifested in the arterial segment is described in Figure 1 as [12, 13]. 
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where 
0

R  are the radius of the tube without any constriction and )(zRR ≅ is the radius of the tube with 

constriction. The length of the tube is denoted by L  and the length of the stenosis by 
0

L . The stenosis starts at dz = .              

In the unobstructed region, the ratio of the radius of the central core to that of the tube is α . The maximum height of the 

stenosis and bulging of the interface at the location where 
2
0

L
dz +=  in the stenotic region is )1,( δδ . 

In the core region, )10( Rr ≤≤ in the presence of Lorentz's force a two-phase macroscopic model is used with the 

following governing equations [9, 13]. 

For the fluid (plasma) phase: 
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Equation of continuity 
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For the particle (erythrocyte) phase: 

Equations of axial and radial momentum 
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Equation of continuity 
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particles is denoted by C , the pressure by p , 
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µ is the fluid viscosity (suspending medium), the mixture viscosity 

(apparent or effective viscosity) by sCs µµ ≅)( , the drag coefficient of interaction for the force exerted by one phase on 

the other by S  with 
f

ρ  and 
p

ρ  are the actual densities of the material constituting the fluid (plasma) and the particle 

(erythrocytes) phases respectively. The electrical conductivity of the fluid is σ and 
0

B is the component of the constant 

uniform magnetic field which was applied in the axial direction.  

The suspension viscosity,
s

µ , was chosen from the experimental observations of Charm and Kurland and the drag 

coefficient of interaction,S , from the classical Stokes drag was modified to account for the finite particulate fractional 

volume [14, 15]. 

In the peripheral region, RrR ≤≤
1

, Navier-Stokes equations were used in the presence of the Lorentz's force: 
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where )
0

,
0

( vu are the (axial, radial) components and 
0

ρ  and the density of the fluid. 

The boundary conditions are given as  
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Assuming 
f

T and 
0

T as the temperature on the core and peripheral plasma layer regions respectively and q  as the 

constant heat flux applied on the wall, the following are the forced convection equations. 

Equation in core region: 
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Equation in peripheral plasma region:  
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where 
0

k  and 
f

k  are the thermal conductivities in the peripheral plasma layer and core region respectively. 

The mean velocity, V , and the mean temperature, 
m

T , are given as 
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For constant flows, all temperatures have the same, constant gradient (denoted by G ) in the axial direction, that is 
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The boundary conditions for the temperatures are given as 
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RESULTS 

After non-dimensionalising using the appropriate non-dimensional variable the following equations are obtained 
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 in the presence of a composite stenosis given by 
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 whereM  is the Hartmann number. 

 The expressions for velocities, fuu ,0 and pu  are found to be 
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where nJ  is the Bessel functions of first kind of order n , nI  is the modified Bessel function of the first kind of 

order n , and nK  is the modified Bessel function of the second kind of order n  [11]. 

The mean velocity, V , is now calculated as 

 





























+Φ−+−+−=
S

CR

M

R
RMJR

M

k
MRRKMRKR

M

k
MRIRMRRI

M

k
V

2

2
1

22

2
)

1
(

11
(3))(

1
)

1
(

11
(2))

1
(

11
)(

1
(12 γ

γ
 where 

dz

dp
=Φ .      (23) 

 Non-dimensionalising Eq. (9) and Eq.(10) leads to  
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The expressions found for the temperatures were used to obtain the friction-factor-Reynolds number product, fRe   
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and the Nusselt number, Nu , which is used to gauge the heat transfer to the blood 
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DISCUSSIONS 

Plots of the solutions obtained are provided for the following parameter values: d =0; 
0

L =1; C =0, 0.1, 0.2, 0.3, 

0.4, 0.5, 0.6; δ =0, 0.05, 0.10, 0.15, M =0, 2, 4, 6, 8, 10. The Péclet number is assumed to be 0.03 for a microvascular 
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flow [17]. The parameter α  is computed using 0/1 Rεα −=  in which )(Cεε ≅ represents the peripheral layer of 

thickness as a function of cell concentration. In order for the computation to be done, the temperature was chosen as 

T =25.5 0C, to be able to use Haynes' analysis where )( mµε = 6.18, 4.67, 3.60, 3.12, 2.58, 2.18 corresponds to hematocrit 

(%) =10, 20, 30, 40, 50, 60 respectively [6]. Simpson's rule is used to evaluate any integral which needed to be solved 

numerically.  
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Figure 2(a)                                                  Figure 2(b) 

Figure 2: The Effect of Varying the Hartmann Number, M , on The Fluid's Velocity in the 
(a) Peripheral Region at 

2

)1( R
r

+= α  and (b) Core Region at 
2

1R
r =  

The velocity profiles in Figures 2(a) and 2(b), show that as the Hartmann number increases, the velocity of the 

fluid decreases in the both layers of the flow. This reduction in the fluid's velocity is due to the opposing Lorentz's force 

that is introduced when the magnetic field is applied. This trend was also observed by Sankar et al. [11]. The velocity of 

the fluid in the core region is larger than that in the peripheral region. There is a decrease in the velocity of the flow in the 

upstream of the stenosis and a gradual increase in its downstream in the both regions. 
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Figure 3(a)                                                     Figure 3(b) 

Figure 3: The Effect of Varying the Pressure Gradient, 
dz

dp , on the Fluid's Velocity in the 

(a) Peripheral Region at 
2

)1( R
r

+= α  and  (b) Core Region at 
2

1R
r = . 

The velocity profiles given in Figures 3(a) and 3(b) show that as the pressure gradient, 
dz

dp , increases, the velocity 

of the fluid increases in both layers of the flow. Therefore the higher the pressure gradient of the flow, the faster the blood 

will flow through the blood vessel. 
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Figure 4(a)                                                    Figure 4(b) 

Figure 4: Variation of Temperature with Changes in (a) Hartmann Number,  
M ( )03.0,1,4.0 ==== cPC ψβ  and (b) Hematocrit, C  ( )03.0,1,8 ==== cPM ψβ  

Now on the introduction of convective heat transfer, the following temperature profiles shown in Figures 4(a) and 

4(b) are obtained. From Figure 4(a), as the Hartmann number, M , increased the temperature increased. Thus the 

temperature of the blood can be increased when needed by the introduction of the certain magnetic field strength. This is 

the primary objective of hyperthermia in cancer therapy whereby the temperature is raised above cytotoxic temperature 

(41-450C) without over exposing healthy tissues [18]. From Figure 4(b), it can be noted that as the hematocrit, C, increases, 

the temperature increases. 

Both the friction-factor-Reynolds number product and Nusselt number were computed and plotted varying 

different parameters. In general, fRe  increased in the upstream of the stenosis growth and reached its maximum at the 

point where the stenosis height was at its greatest and then decreased downstream. There was a general decrease in Nu  as 

the flow progressed. 
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Figure 5(a)                                                Figure 5(b) 

Figure 5: The Effect of Varying The Hartmann Number, M , On (a) fRe  )15.0,4.0( == δC  and 

(b) Nu  ).1.0,03.0,1,2.0( ===== δψβ
c

PC  

The trend observed in Figure 5(a), where fRe  increased as M increased is in keeping with Sanyal et al. [5].             

This occurred because as M increased, the velocity decreased, so the friction-factor-Reynolds number product was 

expected to increase. From Figure 5(b), for a low Péclet number, as the Hartmann number increased, the Nusselt number 

decreased. This trend as also observed in another blood flow study by Chaturvedi et al. [2].    
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Figure 6(a)                                             Figure 6(b) 

Figure 6: The Effect of Varying The Hematocrit, C , on (a) fRe  )15.0,4( == δM  and 

(b) Nu  ).1.0,03.0,1,4( ===== δψβ
c

PM  

With increasing hematocrit both the friction-factor-Reynolds number product and Nusselt number increased                

(see Figures 6(a) and 6(b)). That is, in the presence of a high number of red blood cells, there would be a greater heat and 

energy loss taking place. This is important to predict the effect this will have on the blood flow in patients with plasma cell 

dyscrasias (hematocrit=28.00%, α =0.816), Hb SS-sickle cell (hematocrit=24.80%, α =0.795), hypertension-controlled 

(hematocrit=43.13%, α =0.928), hypertension-uncontrolled (hematocrit=43.25%, α =0.925) and polycythemia 

(hematocrit=63.20%, α =0.990) in which the hematocrit level varies [10]. 
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Figure 7(a)                                   Figure 7(b) 

Figure 7: The Effect of Varying The Stenosis Height, δ , on (a) fRe  )2,4.0( == MC  and 

(b) Nu  ).4.0,03.0,1,4( ===== C
c

PM ψβ  

From Figures 7(a) and 7(b), it was observed that as the stenosis height increased, the friction-factor-Reynolds 

number product increased and there was a very small increase in the Nusselt number. This can be useful in the analysis of 

heat transfer in patients with atherosclerotic plaque. As the atherosclerotic plaque growth progresses, if the patient is 

exposed to heat, it can be predicted that there would be a greater energy loss and a greater heat loss taking place in the 

blood. 

CONCLUSIONS 

The velocity of the fluid decreased as the Hartmann number increased due to the opposing Lorentz's force which 

increases as the magnetic field strengthens. There was a decrease in the velocity of the flow in the upstream of the stenosis 

and the a gradual increase in its downstream. As the pressure gradient increased the velocity also increased. In the presence 

of convective heat transfer, the temperature of the blood increased when the Hartman number increased. As hematocrit 

increased, temperature increased, and both the friction-factor Reynolds number product and Nusselt number increased.  
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The friction-factor Reynolds number product and Nusselt number also increased as the stenosis height increased. As the 

Hartmann number increased, that is as the strength of the magnetic field is increased, the friction-factor Reynolds number 

product increased and the Nusselt number decreased. The restrictions present in this study (including the rigid wall, steady 

and fully developed flow, constant thickness of the peripheral layer) did not prevent it from being useful in understanding 

the flow phenomena.  

In conclusion, magnetic fields can be beneficial in reducing blood velocity and increasing blood temperature if 

needed. The effects of heat transfer on blood flow in the presence of a stenosis can be predicted by examining the effect 

that varying the hematocrit and stenosis height had on the friction-factor Reynolds number product and the Nusselt 

number. This can be especially beneficial for predicting the effect of convective heat on persons with blood conditions in 

which the hematocrit level varies and in atherosclerosis patients. Studies on two layered flows are not only important to the 

understanding of physiological flows (blood flow, protein diffusion, microorganisms movement, particle deposition on the 

respiratory tract) but also to other areas of research such as powder technology, petroleum transport, aerosol filtration, 

waste water treatment, fluidization, mining, power plant piping, corrosive particles in engine oil flow, environmental 

pollution, lunar ash flows, atmospheric fallout, combustion, agriculture and food technologies.  
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